4.5 Review

Mesenchymal stem cell secretome and regenerative therapy after cancer

期刊

BIOCHIMIE
卷 95, 期 12, 页码 2235-2245

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biochi.2013.05.010

关键词

Mesenchymal stem/stromal cells; Regenerative therapy after cancer; Cancer recurrence; Tumor-initiating cells

资金

  1. Department of Defense [BC032981, BC044784]
  2. NIH [R01CA 114246, 1U01HL099775, U01HL100397]
  3. National Heart, Lung, and Blood Institute [R01-HL-085819]
  4. Hillman Foundation
  5. Glimmer of Hope Foundation
  6. Commonwealth of Pennsylvania, through the McGowan Institute of Regenerative Medicine
  7. NHLBI (Production Assistance for Cellular Therapy (PACT) [N01-HB-37165]
  8. Department of Defense Biomedical Translational Initiative [W911QY-09-C-0209]
  9. Maryland Stem Cell Research Fund [2011-MS CRF 11-0008-00, 2007-MSCRF II-0379-00]
  10. Maryland Stem Cell Research Fund (MSCFR) [2009-MSCRF III-106570]

向作者/读者索取更多资源

Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While hi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGF beta, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus on the impact of MSC secretome on cancer cell activity, and discusses the implications for regenerative therapy after cancer. (C) 2013 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据