4.7 Article

Rotational modes of relativistic stars: Analytic results

期刊

PHYSICAL REVIEW D
卷 63, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.63.024019

关键词

-

向作者/读者索取更多资源

We study the r modes and rotational hybrid modes (inertial modes) of relativistic stars. As in Newtonian gravity, the spectrum of low-frequency rotational modes is highly sensitive to the stellar equation of state. If the star and its perturbations obey the same one-parameter equation of state (as with barotropic stars), there exist no pure r modes at all-no modes whose limit, for a star with zero angular velocity, is an axial-parity perturbation. Rotating stars of this kind similarly have no pure g modes, no modes whose spherical limit is a perturbation with polar parity and vanishing perturbed pressure and density. In spherical stars of this kind, the r modes and g modes form a degenerate zero-frequency subspace. We find that rotation splits the degeneracy to zeroth order in the star's angular velocity Omega, and the resulting modes are generically hybrids, whose limit as Omega -->0 is a stationary current with both axial and polar parts. Because each mode has definite parity, its axial and polar parts have alternating values of l. We show that each mode belongs to one of two classes, axial-led or polar-led, depending on whether the spherical harmonic with the lowest value of I that contributes to its velocity field is axial or polar. Newtonian barotropic stars retain a vestigial set of purely axial modes (those with l=m); however, for relativistic barotropic stars, we show that these modes must also be replaced by axial-led hybrids. We compute the post-Newtonian corrections to the l=m modes for uniform density stars. On the other hand, if the star is nonbarotropic (that is, if the perturbed star obeys an equation of state that differs from that of the unperturbed star), the r modes alone span the degenerate zero-frequency subspace of the spherical star. In Newtonian stars, this degeneracy is split only by the order-Omega (2) rotational corrections. However, when relativistic effects are included, the degeneracy is again broken at zeroth order. We compute the I modes of a nonbarotropic, uniform density model to first post-Newtonian order.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据