4.7 Article

Quantum wavepacket method for state-to-state reactive cross sections

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 114, 期 4, 页码 1601-1616

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1334866

关键词

-

向作者/读者索取更多资源

We present a 3D quantum wavepacket method for calculating state-to-state reactive cross sections for the A+BC-->AC+B reaction. The method avoids the coordinate problem (of A+BC arrangements being difficult to represent by AC+B coordinates, and vice versa) by solving the reactant-product decoupling (RPD) equations [T. Peng and J. Z. H. Zhang, J. Chem. Phys. 105, 6072 (1996)] in their further partitioned form [S. C. Althorpe, D. J. Kouri, and D. K. Hoffman, J. Chem. Phys. 107, 7816 (1997)]. These equations decouple the nuclear dynamics Schrodinger equation into separate reactant, strong-interaction, and product regions, permitting different coordinates to be used in each region. We solve the equations using A+BC Jacobi coordinates in the reactant region, and AC+B Jacobi coordinates in the strong-interaction and product regions. In test calculations on the J = 0 H+H-2 reaction, we show that this partitioning of coordinate systems is much more efficient than using A+BC coordinates in the strong-interaction region (as was done in all previous applications of the RPD equations). We apply the method to the H+H-2 reaction (for J=0-24), and obtain the first state-to-state differential cross sections to be calculated by an exact quantum wavepacket method. The method will allow state-to-state cross sections to be calculated for the same reactions for which wavepacket methods can currently calculate total cross sections. (C) 2001 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据