4.7 Article Proceedings Paper

Role of the conserved Ser-Tyr-Lys triad of the SDR family in sepiapterin reductase

期刊

CHEMICO-BIOLOGICAL INTERACTIONS
卷 130, 期 1-3, 页码 825-832

出版社

ELSEVIER SCI IRELAND LTD
DOI: 10.1016/S0009-2797(00)00238-6

关键词

sepiapterin reductase; conserved Ser-Tyr-Lys triad; point mutants

向作者/读者索取更多资源

Sepiapterin reductase (EC 1.1.1.153; SPR) is an enzyme involved in the biosynthesis of tetrahydrobiopterin; and SPR has been identified as a member of the NADP(H)-preferring short-chain dehydrogenase-reductase (SDR) family based on its catalytic properties for exogenous carbonyl compounds and molecular structure. To examine possible differences in the catalytic sites of SPR for exogenous carbonyl compounds and the native pteridine substrates, we investigated by site-directed mutagenesis the role of the highly conserved Ser-Tyr-Lys triad (Ser and YXXXK motif) in SPR, which was shown to be the catalytic site of SDR-family enzymes. From the analysis of catalytic constants for single- and double-point mutants against the triad, Ser and YXXXK motif, in the SPR molecule, participate in the reduction of the carbonyl group of both pteridine and exogenous carbonyl compounds. The Ser and the Tyr of the triad may co-act in proton transfer and stabilization for the carbonyl group of substrates, as was demonstrated for those in the SDR family. But either the Tyr or the Ser of SPR can function alone for proton transfer to a certain extent and show low activity for both substrates. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据