4.7 Article

Elicitation of peroxidase activity and lignin biosynthesis in pepper suspension cells by Phytophthora capsici

期刊

JOURNAL OF PLANT PHYSIOLOGY
卷 158, 期 2, 页码 151-158

出版社

URBAN & FISCHER VERLAG
DOI: 10.1078/0176-1617-00079

关键词

Capsicum annuum; lignification; peroxidase; Phytophthora capsici; PR-proteins; resistance

向作者/读者索取更多资源

Cell suspension cultures of three varieties of Capsicum annuum L., each with a different degree of sensitivity to the fungus Phytophthora capsici, responded to elicitation by both lyophilized mycelium and fungus filtrate with a hypersensitive reaction. They showed the synthesis or accumulation of PR-proteins with peroxidase (EC 1.11.1.7) activity and the accumulation of lignin-like polymer (as measured by derivatization with thioglycolic acid). The cultivation medium was optimised for both plant and fungus growth in order to avoid any stress during their combination. The resistant pepper variety, Smith-5, showed a more intense response to the elicitor preparations than the sensitive varieties, Americano and Yolo Wonder. This was particularly evident when the cell suspensions were elicited with the filtrate, After elicitation, the cell walls thickened through the accumulation of lignin, as can be observed by staining microscope preparations with methylene blue. Elicitation also reduced the level of total peroxidase activity in the susceptible varieties, while such activity increased in resistant varieties, and was accompanied by de novo expression of acidic peroxidase isoenzymes in the extracellular and cell wall fractions. Of note was the PR protein of pi 5.7 showing peroxidase activity, which was induced by both elicitor types in the elicited cell suspensions of the resistant variety alone, making it a marker of resistance. The increases in the activity of these peroxidases in the resistant variety are in concordance with the accumulation of lignin observed 24 h after inoculation by both elicitors from the fungus. The possible role of these isoenzymes in lignin biosynthesis, used to reinforce the cell wails against fungal penetration of the cells, is discussed. These results are in accordance with those previously observed in plant stem sections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据