4.6 Article Proceedings Paper

Dynamically discovering likely program invariants to support program evolution

期刊

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
卷 27, 期 2, 页码 99-123

出版社

IEEE COMPUTER SOC
DOI: 10.1109/32.908957

关键词

program invariants; formal specification; software evolution; dynamic analysis; execution traces; logical inference; pattern recognition

向作者/读者索取更多资源

Explicitly stated program invariants can help programmers by identifying program properties that must be preserved when modifying code. In practice, however, these invariants are usually implicit. An alternative to expecting programmers to fully annotate code with invariants is to automatically infer likely invariants from the program itself. This research focuses on dynamic techniques for discovering invariants from execution traces. This article reports three results. First, it describes techniques for dynamically discovering invariants, along with an implementation, named Daikon, that embodies these techniques. Second, it reports on the application of Daikon to two sets of target programs. In programs from Gries's work on program derivation, the system rediscovered predefined invariants. In a C program lacking explicit invariants, the system discovered invariants that assisted a software evolution task. These experiments demonstrate that, at least for small programs, invariant inference is both accurate and useful. Third, it analyzes scalability issues, such as invariant detection runtime and accuracy, as functions of test suites and program points instrumented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据