4.8 Article

Specific binding of vf14-3-3a isoform to the plasma membrane H+-ATPase in response to blue light and fusicoccin in guard cells of broad bean

期刊

PLANT PHYSIOLOGY
卷 125, 期 2, 页码 1115-1125

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.125.2.1115

关键词

-

向作者/读者索取更多资源

The plasma membrane H+-ATPase is activated by blue light with concomitant binding of the 14-3-3 protein to the C terminus in guard cells. Because several isoforms of the 14-3-3 protein are expressed in plants, we determined which isoform(s) bound to the H+-ATPase in vivo. Four cDNA clones (vf14-3-3a, vf14-3-3b, vf14-3-3c, and vf14-3-3d) encoding 14-3-3 proteins were isolated from broad bean (Vicia faba) guard cells. Northern analysis revealed that mRNAs encoding vf14-3-3a and vf14-3-3b proteins were expressed predominantly in guard cells. The 14-3-3 protein that bound to the H+-ATPase in guard cells had the same molecular mass as the recombinant vf14-3-3a protein. The H+-ATPase immunoprecipitated from mesophyll cell protoplasts, which had been stimulated by fusicoccin, coprecipitated with the 32.5-kD 14-3-3 protein, although three 14-3-3 isoproteins were found in mesophyll cell protoplasts. Digestions of the bound 14-3-3 protein and recombinant vf14-3-3a with cyanogen bromide gave the identical migration profiles on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but that of vf14-3-3b gave a different profile. Mass profiling of trypsin-digested 14-3-3 protein bound to the H+-ATPase gave the predicted peptide masses of vf14-3-3a. Far western analysis revealed that the H+-ATPase had a higher affinity for vf14-3-3a than for vf14-3-3b. These results suggest that the 14-3-3 protein that bound to the plasma membrane H+-ATPase in vivo is vf14-3-3a and that it may play a key role in the activation of H+-ATPase in guard cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据