4.3 Review

P-N bond protein phosphatases

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbapap.2012.03.001

关键词

Histidine kinase; Arginine kinase; Lysine kinase; Phosphohistidine phosphatase; Phosphoarginine phosphatase; Phospholysine phosphatase

向作者/读者索取更多资源

The current work briefly reviews what is currently known about protein phosphorylation on arginine, lysine and histidine residues, where P - N bonds are formed, and the protein kinases that catalyze these reactions. Relatively little is understood about protein arginine and lysine kinases and the role of phosphorylation of these residues in cellular systems. Protein histidine phosphorylation and the two-component histidine kinases play important roles in cellular signaling systems in bacteria, plants and fungi. Their roles in vertebrates are much less well researched and there are no protein kinases similar to the two-component histidine kinases. The main focus of the review however, is to present current knowledge of the characterization, mechanisms of action and biological roles of the phosphatases that catalyze the hydrolysis of these phosphoamino acids. Very little is known about protein phosphoarginine and phospholysine phosphatases, although their existence is well documented. Some of these phosphatases exhibit very broad specificity in terms of which phosphoamino acids are substrates, however there appear to be one or two quite specific protein phospholysine and phosphoarginine phosphatases. Similarly, there are phosphatases with broad substrate specificities that catalyze the hydrolysis of phosphohistidine in protein substrates, including the serine/threonine phosphatases 1, 2A and 2C. However there are two, more specific, protein phosphohistidine phosphatases that have been well characterized and for which structures are available, SixA is a phosphatase associated with two-component histidine kinase signaling in bacteria, and the other is found in a number of organisms, including mammals. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据