4.7 Article

Generating scenario trees for multistage decision problems

期刊

MANAGEMENT SCIENCE
卷 47, 期 2, 页码 295-307

出版社

INST OPERATIONS RESEARCH MANAGEMENT SCIENCES
DOI: 10.1287/mnsc.47.2.295.9834

关键词

scenario generation; asset allocation; nonconvex programming

向作者/读者索取更多资源

In models of decision making under uncertainty we often are faced with the problem of representing the uncertainties in a form suitable for quantitative models. If the uncertainties are expressed in terms of multivariate continuous distributions, or a discrete distribution with far too many outcomes, we normally face two possibilities: either creating a decision model with internal sampling, or trying to find a simple discrete approximation of the given distribution that serves as input to the model. This paper presents a method based on nonlinear programming that can be used to generate a limited number of discrete outcomes that satisfy specified statistical properties. Users are free to specify any statistical properties they find relevant, and the method can handle inconsistencies in the specifications. The basic idea is to minimize some measure of distance between the statistical properties of the generated outcomes and the specified properties. We illustrate the method by single- and multiple-period problems. The results are encouraging in that a limited number of generated outcomes indeed have statistical properties that are close to or equal to the specifications. We discuss how to verify that the relevant statistical properties are captured in these specifications, and argue that what are the relevant properties, will be problem dependent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据