4.3 Review

The dehaloperoxidase paradox

期刊

出版社

ELSEVIER
DOI: 10.1016/j.bbapap.2011.12.008

关键词

Peroxidase; Competitive inhibition; Hemoglobin; Phenol; Marine; Enzyme

资金

  1. ARO [57861-LS]

向作者/读者索取更多资源

The dual functions of the dehaloperoxidase-hemoglobin of Amphitrite ornata leads to a paradox. Peroxidase and hemoglobin functions require ferric and ferrous resting states, respectively. Assuming that hemoglobin function is the dominant function, the starting point for peroxidase activation would be the oxyferrous state. Activation of that state leads to the ferryl intermediate, followed by one-electron oxidation of the substrate, which results in the ferric state. Since no exogenous reductant is known, there is no return to the ferrous form or hemoglobin function. The observation that an internal binding site for 4-bromophenol leads to inhibition leads to a further paradox that the enzyme would be inhibited immediately upon activation under ambient conditions in benthic ecosystems where the inhibitor, 4-bromophenol is present in greater concentration than the substrate, 2,4,6-tribromophenol. In this review, we explore the unresolved aspects of the reaction scheme that leads to the apparent paradox. Recent data showing activation of the oxyferrous state, an extremely high reduction potential and exogenous reduction by the 2,6-dibromoquinone product present a potential resolution of the paradox. These aspects are discussed in the context of control of reactivity radical pathways and reactivity by the motion of the distal histidine, H55, which in turn is coupled to the binding of substrate and inhibitor. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据