4.8 Article

Single-molecule DNA amplification and analysis in an integrated microfluidic device

期刊

ANALYTICAL CHEMISTRY
卷 73, 期 3, 页码 565-570

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac001026b

关键词

-

资金

  1. NCI NIH HHS [P01 CA77664] Funding Source: Medline

向作者/读者索取更多资源

Stochastic PCR amplification of single DNA template molecules followed by capillary electrophoretic (CE) analysis of the products is demonstrated in an integrated microfluidic device. The microdevice consists of submicroliter PCR chambers etched into a glass substrate that are directly connected to a microfabricated CE system. Valves and hydrophobic vents provide controlled and sensorless loading of the 280-nL PCR chambers; the low volume reactor, the low thermal mass, and the use of thin-film heaters permit cycle times as fast as 30 s, The amplified product, labeled with an intercalating fluorescent dye, is directly injected into the gel-filled capillary channel for electrophoretic analysis. Repetitive PCR analyses at the single DNA template molecule level exhibit quantized product peak areas; a histogram of the normalized peak areas reveals clusters of events caused by 0, 1, 2, and 3 viable template copies in the reactor and these event clusters are shown to fit a Poisson distribution. This device demonstrates the most sensitive PCR possible in a microfabricated device. The detection of single DNA molecules will also facilitate single-cell and single-molecule studies to expose the genetic variation underlying ensemble sequence and expression averages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据