4.7 Article Proceedings Paper

(Bio) chemistry of bacterial leaching - direct vs. indirect bioleaching

期刊

HYDROMETALLURGY
卷 59, 期 2-3, 页码 159-175

出版社

ELSEVIER
DOI: 10.1016/S0304-386X(00)00180-8

关键词

chemolithotrophic bacteria; bioleaching; extracellular polymeric substances

向作者/读者索取更多资源

Bioleaching of metal sulfides is effected by bacteria, like Thiobacillus ferrooxidans, Leptospirillum ferrooxidans, Sulfolobus/Acidianus, etc., via the (re)generation of iron(III) ions and sulfuric acid. According to the new integral model for bioleaching presented here, metal sulfides are degraded by a chemical attack of iron(III) ions and/or protons on the crystal lattice. The primary iron(III) ions are supplied by the bacterial extracellular polymeric substances, where they are complexed to glucuronic acid residues. The mechanism and chemistry of the degradation is determined by the mineral structure. The disulfides pyrite (FeS2), molybdenite (MoS2), and tungstenite (WS2) are degraded via the main intermediate thiosulfate. Exclusively iron(III) ions are the oxidizing agents for the dissolution. Thiosulfate is, consequently, degraded in a cyclic process to sulfate, with elemental sulfur being a side product. This explains, why only iron(II) ion-oxidizing bacteria are able to oxidize these metal sulfides. The metal sulfides galena (PbS), sphalerite (ZnS), chalcopyrite (CuFeS2), hauerite (MnS2), orpiment (As2S3), and realgar (As4S4) are degradable by iron(III) ion and proton attack. Consequently, the main intermediates are polysulfides and elemental sulfur (thiosulfate is only a by-product of further degradation steps). The dissolution proceeds via a H2S*(+)-radical and polysulfides to elemental sulfur. Thus, these metal sulfides are degradable by all bacteria able to oxidize sulfur compounds (like T. thiooxidans, etc.). The kinetics of these processes are dependent on the concentration of the iron(III) ions and, in the latter case, on the solubility product of the metal sulfide. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据