4.6 Article

A study of silver (I) ion-organonitrile complexes: Ion structures, binding energies, and substituent effects

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 105, 期 4, 页码 710-719

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp002676m

关键词

-

向作者/读者索取更多资源

Density functional calculations at B3LYP/DZVP an used to obtain the binding enthalpies and free energies for the reaction Ag+ + XCN --> AgNCX+, where X = H, CH3, NH2, OH, F, CF3, CN, NO2, N(CH3)(2), C6H5, p-C6H4N(CH3)(2), p-C6H4NO2, and p-C6H4NH2. The calculated binding enthalpies 298 K range from 52.2 kcal mol(-1) for X = p-C6H4N(CH3)(2) to 21.3 kcal mol(-1) for X = NO2. Calculations at this level of theory are also used to optimize the structures of Ag(NCCH3)(n)(+) and Ag(NCH)(n)(+) ions, where n = 1-6. The binding enthalpies for the addition of the first and second molecules of CH3CN are 40.1 and 35.3 kcal mol(-1), whereas for HCN, they are calculated to be 31.2 and 28.3 kcal mol(-1), respectively. The binding enthalpies of the third and fourth ligands are much smaller at 15.9 and 10.8 kcal mol(-1) for CH3CN and 13.5 and 9.7 kcal mol(-1) for HCN. The 5- and 6-coordinate structures have positive free energies of formation with both ligands. Electrospraying a solution of AgNO3 and acetonitrile in water shows the dominant ions to be Ag+, AgNCCH3+, and Ag(NCCH3)(2)(+), with the Ag(NCCH3)(3)(+) ion being observed only in very small amounts and only under relatively mild conditions. Energy resolved collision-induced dissociation (CTD) experiments confirm the Ag (NCCH3)(3)(+) ion to be a loosely bound species, while the Ag(NCCH3)(2)(+) and AgNCCH3+ ions have substantially higher and comparable binding energies. Using the threshold method, we determined the binding energies at 0 K of NCCH3 to Ag+ and of NCCH3 to AgNCCH3+ to be 38.7 and 34.6 kcal mol(-1), respectively; the corresponding energies at 298 It are 39.4 and 34.7 kcal mol(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据