4.7 Article

H63D HFE genotype accelerates disease progression in animal models of amyotrophic lateral sclerosis

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbadis.2014.09.016

关键词

H63D HFE; SOD1(G93A); ALS; Iron; Oxidative stress; Gliosis

资金

  1. Judith and Jean Pape Adams Charitable Foundation
  2. Paul and Harriett Camp-bell Fund for ALS research
  3. Zimmerman Family Love Fund
  4. Robert Luongo ALS Fund

向作者/读者索取更多资源

H63D HFE is associated with iron dyshomeostasis and oxidative stress; each of which plays an important role in amyotrophic lateral sclerosis (ALS) pathogenesis. To examine the role of H63D HFE in ALS, we generated a double transgenic mouse line (SOD1/H67D) carrying the H67D HFE (homologue of human H63D) and SOD1(G93A) mutations. We found double transgenic mice have shorter survival and accelerated disease progression. We examined parameters in the lumbar spinal cord of double transgenic mice at 90 days (presymptomatic), 110 days (symptomatic) and end-stage. Transferrin receptor and L-ferritin expression, both indicators of iron status, were altered in double transgenic and SOD1 mice starting at 90 days, indicating loss of iron homeostasis in these mice. However, double transgenic mice had higher L-ferritin expression than SOD1 mice. Double transgenic mice exhibited increased lba-1 immunoreactivity and caspase-3 levels, indicating increased microglial activation which would be consistent with the higher L-ferritin levels. Although both SOD1 and double transgenic mice had increased GFAP expression, the magnitude of the increase was higher in double transgenic mice at 110 days, suggesting increased gliosis in these mice. Increased hemeoxygenase-1 and decreased nuclear factor E2-related factor 2 levels in double transgenic mice strongly suggest the accelerated disease process could be associated with increased oxidative stress. There was no evidence of TAR-DNA-binding protein 43 mislocalization to the cytoplasm in double transgenic mice; however, there was evidence suggesting neurofilament disruption, which has been reported in ALS. Our findings indicate H63D HFE modifies ALS pathophysiology via pathways involving oxidative stress, gliosis and disruption of cellular functions. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据