4.7 Review

S-adenosyl-L-homocysteine hydrolase and methylation disorders: Yeast as a model system

期刊

出版社

ELSEVIER
DOI: 10.1016/j.bbadis.2012.09.007

关键词

AdoMet; AdoHcy; Homocysteine; S-adenosyl-L-homocysteine hydrolase

资金

  1. Federal Ministry of Economy, Family and Youth (BMWFJ)
  2. Federal Ministry of Traffic, Innovation and Technology (bmvit)
  3. Styrian Business Promotion Agency SFG
  4. Standortagentur Tirol
  5. ZIT Technology Agency of the City of Vienna through the COMET Funding Program
  6. Austrian Science Fund FWF [P24216-B21, P18094-B14]
  7. Austrian Science Fund (FWF) [P 24216] Funding Source: researchfish

向作者/读者索取更多资源

S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed. (c) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据