4.6 Article

12-Lipoxygenase in porcine coronary microcirculation: implications for coronary vasoregulation

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.2001.280.2.H693

关键词

arachidonic acid; 12(S)-hydroxyeicosatetraenoic acid; vasodilation; hyperpolarization; oxidative stress

资金

  1. NHLBI NIH HHS [HL-49264, HL-62984] Funding Source: Medline

向作者/读者索取更多资源

Noncyclooxygenase metabolites of arachidonic acid (AA) have been proposed to mediate endothelium-dependent vasodilation in the coronary microcirculation. Therefore, we examined the formation and bioactivity of AA metabolites in porcine coronary (PC) microvascular endothelial cells and microvessels, respectively. The major noncyclooxygenase metabolite produced by microvascular endothelial cells was 12(S)-hydroxyeicosatetraenoic acid (HETE), a lipoxygenase product. 12(S)-HETE release was markedly increased by pretreatment with 13(S)-hydroperoxyoctadecadienoic acid but not by the reduced congener 13(S)-hydroxyoctadecadienoic acid, suggesting oxidative upregulation of 12(S)-HETE output. 12(S)-HETE produced potent relaxation and hyperpolarization of PC microvessels (EC50, expressed as -log[M] = 13.5 +/- 0.5). Moreover, 12(S)-HETE potently activated large-conductance Ca2+-activated K+ currents in PC microvascular smooth muscle cells. In contrast, 12(S)-HETE was not a major product of conduit PC endothelial AA metabolism and did not exhibit potent bioactivity in conduit PC arteries. We suggest that, in the coronary microcirculation, 12(S)HETE can function as a potent hyperpolarizing vasodilator that may contribute to endothelium-dependent relaxation, particularly in the setting of oxidative stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据