4.7 Article

Focal adhesion kinase regulates intestinal epithelial barrier function via redistribution of tight junction

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbadis.2012.10.006

关键词

Epithelial barrier; Focal adhesion kinase; Tight junction; ZO-1; Occludin

资金

  1. National Project Knowledge Cluster Initiative (2nd stage, Sapporo Biocluster Bio-S)
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan
  3. Smoking Research Foundations
  4. fund for Asahikawa Medical University Creative Research in the Field of Life Science
  5. Grants-in-Aid for Scientific Research [24890012] Funding Source: KAKEN

向作者/读者索取更多资源

Disruption of epithelial barrier function was identified as one of the pathologic mechanisms in inflammatory bowel diseases (IBD). Epithelial barrier consists of various intercellular junctions, in which the tight junction (TJ) is an important component. However, the regulatory mechanism of tight junction is still not clear. Here we examined the role of focal adhesion kinase (FAK) in the epithelial barrier function on Caco-2 monolayers using a specific FAK inhibitor, PF-573, 228 (PF-228). We found that the decrease of transepithelial resistance and the increase of paracellular permeability were accompanied with the inhibition of autophosphorylation of FAK by PF-228 treatment. In addition, PF-228 inhibited the FAK phosphorylation at Y576/577 on activation loop by Src, suggesting Src-dependent regulation of FAK in Caco-2 monolayers. In an ethanol-induced barrier injury model, PF-228 treatment also inhibited the recovery of transepithelial resistance as well as these phosphorylations of FAK. In a sucrose gradient ultracentrifugation, FAK co-localized with claudin-1, an element of the TJ complex, and they co-migrate after ethanol-induced barrier injury. Immunofluorescence imaging analysis revealed that PF-228 inhibited the FAK redistribution to the cell border and reassembly of TJ proteins in the recovery after ethanol-induced barrier injury. Finally, knockdown of FAK by siRNA resulted in the decrease of transepithelial resistance. These findings reveal that activation of FAK is necessary for maintaining and repairing epithelial barrier in Caco-2 cell monolayer via regulating TJ redistribution. (c) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据