4.4 Article

Laboratory monitoring of surfactant imbibition with computerized tomography

期刊

SPE RESERVOIR EVALUATION & ENGINEERING
卷 4, 期 1, 页码 16-25

出版社

SOC PETROLEUM ENG
DOI: 10.2118/69197-PA

关键词

-

向作者/读者索取更多资源

Oil production from fractured reservoirs can occur by spontaneous water imbibition and oil expulsion front the matrix into the fracture network. Injection of dilute surfactant can recover additional oil by towering oil/water interfacial tension (IFT) or altering rock wettability, thereby enhancing countercurrent movement and accelerating gravity segregation. Modeling of such recovery mechanisms requires knowledge of temporal and spatial fluid distribution within porous media. In this study, dilute surfactant imbibition tests performed for vertically oriented carbonate cores of the Yates field were found to produce additional oil over brine imbibition. Computerized tomography (CT) scans were acquired at times during the imbibition process to quantify spatial fluid movement and saturation distribution, and CT results were In reasonable agreement with material-balance information. Imbibition and CT-scan results suggest that capillary force and IFT gradient (Marangoni effect) expedited countercurrent movement in the radial direction within a short period, whereas vertical gravity segregation was responsible for a late-time ultimate recovery. Wettability indices, determined by the U.S. Bureau of Mines (USBM) centrifuge method, show that dilute surfactants have shifted the wetting characteristic of the Yates rocks toward less oil-wet. A numerical model was developed to simulate the surfactant imbibition experiments. A reasonable agreement between simulated and experimental results was achieved with surfactant diffusion and transitioning df relative permeability and capillary pressure data as a function of IFT and surfactant adsorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据