4.6 Article

Molecular cloning of a divinyl ether synthase - Identification as a CYP74 cytochrome P-450

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 5, 页码 3620-3627

出版社

ELSEVIER
DOI: 10.1074/jbc.M008964200

关键词

-

向作者/读者索取更多资源

Lipoxygenase-derived fatty acid hydroperoxides are metabolized by CYP74 cytochrome P-450s to various oxylipins that play important roles in plant growth and development. Here, we report the characterization of a Lycopersicon esculentum (tomato) cDNA whose predicted amino acid sequence defines a previously unidentified P-450 subfamily (CYP74D). The recombinant protein, expressed in Escherichia coli, displayed spectral properties of a P-450. The enzyme efficiently metabolized 9-hydroperoxy linoleic acid and 9-hydroperoxy linolenic acid but was poorly active against the corresponding 13-hydroperoxides. Incubation of recombinant CYP74D with 9-hydroperoxy linoleic acid and 9-hydroperoxy linolenic acid yielded divinyl ether fatty acids (colneleic acid and colnelenic acid, respectively), which have been implicated as plant anti-fungal toxins. This represents the first identification of a cDNA encoding a divinyl ether synthase and establishment of the enzyme as a CYP74 P-450. Genomic DNA blot analysis revealed the existence of a single divinyl ether synthase gene located on chromosome one of tomato. In tomato seedlings, root tissue was the major site of both divinyl ether synthase mRNA accumulation and enzyme activity. These results indicate that developmental expression of the divinyl ether synthase gene is an important determinant of the tissue specific synthesis of divinyl ether oxylipins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据