4.7 Review

Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease

期刊

出版社

ELSEVIER
DOI: 10.1016/j.bbadis.2008.10.014

关键词

Amyloid beta oligomer; IAPP; Glucose metabolism; Excitotoxicity; Calcium; Serine and threonine phosphorylation; Synaptic plasticity; Insulin receptor substrate; Akt; GSK3; Alzheimer's disease; Diabetes; Neuronal insulin resistance; Glucose metabolism; Memory

向作者/读者索取更多资源

Characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system respectively, it is now widely recognized that type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and amyloidogenesis. Several recent studies suggest that this is not an epiphenomenon, but rather these two diseases disrupt common molecular pathways and each disease compounds the progression of the other. For instance, in AD the accumulation of the amyloid-beta peptide (A beta), which characterizes the disease and is thought to participate in the neurodegenerative process, may also induce neuronal insulin resistance. Conversely, disrupting normal glucose metabolism in transgenic animal models of AD that over-express the human amyloid precursor protein (hAPP) promotes amyloid-peptide aggregation and accelerates the disease progression. Studying these processes at a cellular level suggests that insulin resistance and A beta aggregation may not only be the consequence of excitotoxicity, aberrant Ca2+ signals, and proinflammatory cytokines such as TNF-alpha, but may also promote these pathological effectors. At the molecular level, insulin resistance and A beta disrupt common signal transduction cascades including the insulin receptor family/PI3 kinase/Akt/GSK3 pathway. Thus both disease processes contribute to overlapping pathology, thereby compounding disease symptoms and progression. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据