4.8 Article

Flow (shear stress)-induced endothelium-dependent dilation is altered in mice lacking the gene encoding for dystrophin

期刊

CIRCULATION
卷 103, 期 6, 页码 864-870

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.CIR.103.6.864

关键词

endothelium; genes; dystrophin

向作者/读者索取更多资源

Background-Dystrophin has a key role in striated muscle mechanotransduction of physical forces. Although cytoskeletal elements play a major role in the mechanotransduction of pressure and flow in vascular cells, the role of dystrophin in vascular function has not yet been investigated. Thus, we studied endothelial and muscular responses of arteries isolated from mice lacking dystrophin (mdx mice). Methods and Results-Carotid and mesenteric resistance arteries 120 mum in diameter were isolated and mounted in vitro in an arteriograph to control intraluminal pressure and flow. Blood pressure was not affected by the absence of dystrophin. Pressure-induced (myogenic), phenylephrine-induced, and KCl-induced forms of tone were unchanged. Flow (shear stress)-induced dilation in arteries isolated from mdx mice was decreased by 50% to 60%, whereas dilation to acetylcholine or sodium nitroprusside was unaffected. N-G-nitro-L-arginine methyl ester-sensitive flow dilation was also decreased in arteries from mdx mice. Thus, the absence of dystrophin was associated with a defect in signal transduction of shear stress. Dystrophin was present in vascular endothelial and smooth muscle cells, as shown by immunolocalization, and localized at the level of the plasma membrane, as seen by confocal microscopy of perfused isolated arteries. Conclusions-This is the first functional study of arteries lacking the gene for dystrophin. Vascular reactivity was normal, with the exception of now-induced dilation. Thus, dystrophin could play a specific role in shear-stress mechanotransduction in arterial endothelial cells. Organ damage in such diseases as Duchenne dystrophy might be aggravated by such a defective arterial response to flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据