4.6 Article

Selective inhibition of inducible nitric oxide synthase exacerbates erosive joint disease

期刊

JOURNAL OF IMMUNOLOGY
卷 166, 期 4, 页码 2734-2740

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.166.4.2734

关键词

-

向作者/读者索取更多资源

NO is an essential cytotoxic agent in host defense, yet can be autotoxic if overproduced, as evidenced in inflammatory lesions and tissue destruction in experimental arthritis models. Treatment of streptococcal cell wall-induced arthritis in rats with NG-monomethyl-L-arginine (L-NMMA), a competitive nonspecific inhibitor of both constitutive and inducible isoforms of NO synthase (NOS), prevents intraarticular accumulation of leukocytes, joint swelling, and bone erosion. Because increased inducible NOS (iNOS) expression and NO generation are associated with pathogenesis of chronic inflammation, we investigated whether a selective inhibitor of iNOS, N-iminoethyl-L-lysine (L-NIL), would have more directed anti-arthritic properties. Whereas both L-NMMA and L-NIL inhibited nitrite production by streptococcal cell wall-stimulated rat mononuclear cells;in vitro and systemic treatment of arthritic rats with L-NMMA ablated synovitis, surprisingly L-NIL did not mediate resolution of inflammatory joint lesions. On the contrary; daily administration of L-NIL failed to reduce the acute response and exacerbated the chronic inflammatory response, as reflected by profound tissue destruction and loss of bone and cartilage. Although the number of iNOS-positive cells within the synovium decreased after treatment with L-NB, immunohistochemical analyses revealed a distinct pattern of endothelial and neuronal NOS expression in the arthritic synovium that was unaffected by the isoform-specific L-NIL treatment. These studies uncover a contribution of the constitutive isoforms of NOS to the evolution of acute and chronic inflammation pathology which may be important in the design of therapeutic agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据