4.6 Article

Effective field theory for the bulk and edge states of quantum Hall states in unpolarized single layer and bilayer systems

期刊

PHYSICAL REVIEW B
卷 63, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.63.085306

关键词

-

向作者/读者索取更多资源

We present an effective theory for bulk fractional quantum hall (FQH) states in spin-polarized bilayer and spin-1/2 single-layer two-dimensional electron gases in high magnetic fields consistent with the requirement of global gauge invariance on systems with periodic boundary conditions. We derive a theory for the edge states that follows naturally from this bulk theory. We find that the minimal effective theory contains two propagating edge modes that carry charge and energy, and two nonpropagating topological modes responsible for the statistics of the excitations. We give a detailed description of the effective theory for spin-singlet states, symmetric bilayer states, and for the (m,m,m) states. We explicitly calculate. for a number of cases of interest, the operators that create the elementary excitations, their bound states, and the electron. We also discuss the scaling behavior of the tunneling conductances in different situations: internal tunneling, tunneling between identical edges, and tunneling into a FQH state from a Fermi liquid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据