4.8 Article

Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells

期刊

JOURNAL OF POWER SOURCES
卷 94, 期 1, 页码 40-50

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0378-7753(00)00662-5

关键词

two-phase transport; PEM fuel cells; analytical modeling; numerical simulation; water management

向作者/读者索取更多资源

Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Single- and two-phase regimes of water distribution and transport are classified by a threshold current density corresponding to first appearance of liquid water at the membrane/cathode interface. When the cell operates above the threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multicomponent mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone of the hydrophilic structure. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A cm(-2) for dry inlet air. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据