4.6 Article

Direct evidence for leptin-induced lipid oxidation independent of long-form leptin receptor

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbalip.2010.06.009

关键词

Leptin; db/db mouse; Primary myotube; STAT3 siRNA; p38 MAPK siRNA

向作者/读者索取更多资源

Leptin administration has been shown to enhance muscle lipid oxidation in relation to the energy expenditure. Both long-form (Ob-R(L)) and short-form leptin receptors (Ob-R(S)) are expressed in skeletal muscle, but the role of Ob-R(S) is unclear. in the present study, the role of Ob-R(S) in leptin-induced lipid oxidation in skeletal muscles was investigated using primary murine myotubes from m/m and db/db mice. Primary myotubes were treated with leptin (0.1, 1, 10, 100 nM) for 24 h. Lipid oxidation was determined by (14)CO(2) production rate from [1-(14)C] palmitate. Leptin was found to increase lipid oxidation in a dose- and time-dependent manner in db/db myotubes as well as in m/m myotubes. Leptin significantly increased phosphorylation of JAK2 and STAT3 in both types of myotube. Leptin-induced lipid oxidation was abolished by STAT3 siRNA. To investigate the mechanism underlying leptin-induced lipid oxidation, the effects of pharmacological inhibitors were examined. JAK2 or p38 MAPK inhibitor suppressed leptin-induced lipid oxidation and decreased STAT3 phosphorylation in both types of myotube, respectively. Leptin significantly increased phosphorylation of p38 MAPK, and leptin-induced lipid oxidation was abolished by treatment with p38 MAPK siRNA in both types of myotube. These results suggest that leptin induces lipid oxidation in skeletal muscle through the JAK2/p38 MAPK/STAT3 signaling pathway via not only Ob-R(L) but also Ob-R(S). (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据