4.5 Review

Bioreactors to influence stem cell fate: Augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS
卷 1830, 期 2, 页码 2470-2480

出版社

ELSEVIER
DOI: 10.1016/j.bbagen.2012.06.007

关键词

Bioreactor; Mesenchymal stem cell; Cell signaling; Shear; Oxygen tension

资金

  1. National Institutes of Health [R01 AR061460]

向作者/读者索取更多资源

Background: Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro. Scope of review: This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems. Major conclusions: The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased. General significance: Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据