3.9 Article

PCR techniques for clonality assays

期刊

DIAGNOSTIC MOLECULAR PATHOLOGY
卷 10, 期 1, 页码 24-33

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00019606-200103000-00005

关键词

clonality; X chromosome inactivation; microsatellites; tumor suppressor genes; tumor progression; paraffin-embedded tissues

向作者/读者索取更多资源

Clonal overgrowths represent the hallmark of neoplastic proliferations, and their demonstration has been proved useful clinically for the diagnosis of malignant lymphomas based on the detection of specific and dominant immunoglobulin and/or T-cell receptor gene rearrangements. Nonrandom genetic alterations can also be used to test clonal expansions and the clonal evolution of neoplasms, especially analyzing hypervariable deoxyribonucleic acid (DNA) regions from patients heterozygous for a given marker. These tests rely basically on the demonstration of loss of heterozygosity (LOH) resulting from either hemizygosity (nonrandom interstitial DNA deletions) or homozygosity of mutant alleles observed in neoplasms. LOH analyses identify clonal expansions of a tumor cell population, and point to monoclonal proliferation when multiple and consistent LOH are demonstrated. Based on the methylation-related inactivation of one X chromosome in female subjects, X-linked markers (e.g,, androgen receptor gene) will provide clonality information using LOH analyses after DNA digestion with methylation-sensitive restriction endonucleases. Therefore, both non-X-linked and X-linked analyses give complementary information, related and not related to the malignant transformation pathway respectively. Applied appropriately, these tools can establish the clonal evolution of tumor cell populations (tumor heterogeneity), identify early relapses, distinguish recurrent tumors from other metachronic neoplasms, and differentiate field transformation from metastatic tumor growths in synchronic and histologically identical neoplasms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据