4.5 Review

Thioredoxin glutathione reductase: Its role in redox biology and potential as a target for drugs against neglected diseases

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS
卷 1810, 期 12, 页码 1262-1271

出版社

ELSEVIER
DOI: 10.1016/j.bbagen.2011.06.024

关键词

Drug development; Flavoprotein oxidoreductase; Glutathione; Schistosomiasis; Selenocysteine; Thioredoxin

资金

  1. National Institute of Allergy and Infectious Diseases [AI065622]

向作者/读者索取更多资源

Background: There are two, largely autonomous antioxidant pathways in many organisms, one based on thioredoxin and one based on glutathione, with each pathway having a unique flavoprotein oxidoreductase to maintain them in a reduced state. A recently discovered protein, thioredoxin glutathione reductase (TGR) potentially connects these two pathways. In a large group of parasitic worms, responsible for hundreds of millions of infections in humans and animals, untold morbidity and significant mortality, TGR is the sole enzyme present to maintain redox balance. Scope of review: In this review, the current understanding of the biochemical properties of TGR enzymes is compared to the related enzymes thioredoxin reductase and glutathione reductase. The role of the rare amino acid selenocysteine is discussed. An overview of the potential to target TGR for drug development against a range of parasitic worms and preliminary results to identify TGR inhibitors for schistosomiasis treatment is presented. Major conclusions: TGR has properties that are both unique and common to other flavoprotein oxidoreductases. TGR plays a fundamentally different and essential role in the redox biology of parasitic flatworms. Therefore, TGR is a promising target for drug development for schistosomiasis and other trematode and cestode infections. General significance: TGR may have differing functions in host organisms, but through analyses to understand its ability to reduce both glutathione and thioredoxin we can better understand the reaction mechanisms of an important class of enzymes. The unique properties of TGR in parasitic flatworms provide promising routes to develop new treatments for diseases. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据