4.5 Review

Ferritins and iron storage in plants

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS
卷 1800, 期 8, 页码 806-814

出版社

ELSEVIER
DOI: 10.1016/j.bbagen.2009.12.003

关键词

Iron homeostasis; Oxidative stress; Chloroplast; Vacuole

向作者/读者索取更多资源

Iron is essential for both plant productivity and nutritional quality. Improving plant iron content was attempted through genetic engineering of plants overexpressing ferritins. However, both the roles of these proteins in the plant physiology, and the mechanisms involved in the regulation of their expression are largely unknown. Although the structure of ferritins is highly conserved between plants and animals, their cellular localization differ. Furthermore, regulation of ferritin gene expression in response to iron excess occurs at the transcriptional level in plants, in contrast to animals which regulate ferritin expression at the translational level. In this review, our knowledge of the specific features of plant ferritins is presented, at the level of their (i) structure/function relationships, (ii) cellular localization, and (iii) synthesis regulation during development and in response to various environmental cues. A special emphasis is given to their function in plant physiology, in particular concerning their respective roles in iron storage and in protection against oxidative stress. Indeed, the use of reverse genetics in Arabidopsis recently enabled to produce various knock-out ferritin mutants, revealing strong links between these proteins and protection against oxidative stress. In contrast, their putative iron storage function to furnish iron during various development processes is unlikely to be essential. Ferritins, by buffering iron, exert a fine tuning of the quantity of metal required for metabolic purposes, and help plants to cope with adverse situations, the deleterious effects of which would be amplified if no system had evolved to take care of free reactive iron. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据