4.5 Article

A grobner free alternative for polynomial system solving

期刊

JOURNAL OF COMPLEXITY
卷 17, 期 1, 页码 154-211

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/jcom.2000.0571

关键词

polynomial system solving; elimination; geometric resolution

向作者/读者索取更多资源

Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic extension defined by the let of roots. its minimal polynomial, and the parameterizations of the coordinates. Such a representation of the solutions has a long history which goes back to Leopold Kronecker and has been revisited many times in computer algebra. We introduce a new generation of probabilistic algorithms where all the computations use only univariate or bivariate polynomials. Wa give a new codification of the set of solutions of a positive dimensional algebraic variety relying on a new global version of Newton's iterator. Roughly speaking the complexity of our algorithm is polynomial in some kind of degree of the system, in its height, and linear in the complexity of evaluation of the system. We present our implementation in the Magma system which is called Kronecker in homage to his method for solving systems of polynomial equations. We show that the theoretical complexity of our algorithm is well reflected in practice and we exhibit some cases for which our program is more efficient than the other available software. (C) 2001 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据