4.5 Article

Pluronic F-127 Stabilised Docetaxel Nanocrystals Improve Apoptosis by Mitochondrial Depolarization in Breast Cancer Cells: Pharmacokinetics and Toxicity Assessment

期刊

JOURNAL OF BIOMEDICAL NANOTECHNOLOGY
卷 11, 期 10, 页码 1747-1763

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jbn.2015.2158

关键词

Nanomedicine; Docetaxel; Breast Cancer; High Pressure Homogenization; Taxotere; Toxicity

资金

  1. Council of Scientific and Industrial Research [CSC0302]

向作者/读者索取更多资源

Docetaxel (DTX) is favoured option for breast cancer treatment; however its marketed formulation (Taxotere) generates therapeutic response at the cost of undue toxicity. In order to circumvent such limitations, DTX nanocrystals (DTX-NCs) were prepared through high pressure homogenization (HPH) technique using pluronic F-127 (PF-127) as a stabilizer. DTX-NCs presented higher efficacy against MCF-7 breast cancer cells with exposition of 1.75 and 2.13 fold lower inhibitory concentration (1050) compared to free drug and Taxotere, respectively. DTX-NCs enhanced the DTX induce G2-M arrest by 1.24 and 1.79 fold compared to Taxotere and free DTX whereas highest apoptotic population (54.79%) of MCF-7 cells was also observed when cells were incubated with DTX-NCs for 24 h in comparison to free DTX (9.69%) and Taxotere (12.55%). The claims of improvement were substantiated by investigating the modulation in apoptotic mechanism induced by the subtle physical state variation of DTX in DTX-NCs. Results revealed that DTX-NCs induced apoptosis was linked to altered mitochondrial membrane potential. DTX-NCs caused highest (39.53%) depolarization of mitochondria compared to free DTX (9.34%) and Taxotere (18.72%). Further, safety of DTX-NCs was ascertained via haemolytic testing and in-vivo toxicity studies in mice. Developed formulation exhibited acceptable haemolytic potential which suggested its suitability towards parenteral administration. Moreover, in-vivo acute toxicity studies demonstrated that the developed NCs were safer than marketed Taxotere. These results elicit that DTX-NCs would be a viable alternative to commercial formulation for treatment of breast cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据