4.5 Article

Experimental and kinetic studies on pore development during CO2 activation of oil-palm-shell char

期刊

JOURNAL OF POROUS MATERIALS
卷 8, 期 2, 页码 149-157

出版社

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1009603110828

关键词

oil-palm shell; CO2 activation; surface area; pore structure; random pore model

向作者/读者索取更多资源

The results of experimental and kinetic studies on pore development during CO2 activation of char derived from oil-palm shell, an abundant solid waste in some tropical countries, were presented in this paper. CO2 was used as an activating agent instead of air because the 21% oxygen content in air would cause severe burn-off of carbon contents, resulting in detrimental effects on pore development. In preparing the activated carbon from oil-palm shell by CO2 activation, size of the starting material and CO2 gas flow rate were identified to minimize the effects of gas diffusion. Under a kinetic-controlled condition, the effects of char characteristics and activation temperature on BET and micropore surface areas, porosity and pore size distribution were investigated. For the char prepared from oil-palm shell at a low carbonization temperature of 873 K, the activated carbon with a reasonably high pore surface area and predominant microporosity was obtained. Its applications are in gas-adsorbing processes such as air pollutant removal and gas separation. A random pore model was developed to describe pore development during the carbon-CO2 reaction process. Model predictions were compared with data from thermogravimetric analyses. Kinetic study showed that the activation reaction rate was dependent on both the initial pore structure of the char and the transient pore structure which was developed progressively during the activation process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据