4.6 Article

Oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2-XNiXO3 perovskite oxide and application for the electrolyte of solid oxide fuel cells

期刊

JOURNAL OF MATERIALS SCIENCE
卷 36, 期 5, 页码 1125-1131

出版社

SPRINGER
DOI: 10.1023/A:1004821607054

关键词

-

向作者/读者索取更多资源

Although hole conduction was present, it was found that doping with Ni was effective in improving the oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2O3 based perovskite oxides. Considering the ionic transport number and the electrical conductivity, the optimized composition for Ni doped samples was La0.8Sr0.2Ga0.8Mg0.13Ni0.07O3 (LSGMN). In this composition, electrical conductivity was found to be virtually independent of the oxygen partial pressure from 1 to 10(-21) atm. Consequently, the oxide ion conductivity was still dominant in this optimized composition. In agreement with the improved oxide ionic conductivity, the power density of the solid oxide fuel cell using LaGaO3 as an electrolyte increased by doping with a small amount of Ni on the Ga site. In particular, the power density of 224 mW/cm(2) at 873 K, which is the maximum power density in the cells using LaGaO3 based oxide as the electrolyte, was attained using LSGMN in spite of the use of electrolyte plates with a thickness of 0.5 mm. Therefore, LSGMN is highly attractive for the electrolyte material of low temperature operating SOFCs. (C) 2001 Kluwer Academic Publishers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据