4.7 Article

Unusual pH-dependence of diadinoxanthin de-epoxidase activation causes chlororespiratory induced accumulation of diatoxanthin in the diatom Phaeodactylum tricornutum

期刊

JOURNAL OF PLANT PHYSIOLOGY
卷 158, 期 3, 页码 383-390

出版社

URBAN & FISCHER VERLAG
DOI: 10.1078/0176-1617-00288

关键词

Spinacia oleracea; Phaeodactylum tricornutum; algae; chlororespiration; diadinoxanthin de-epoxidase; photoprotection; photosynthesis; violaxanthin de-epoxidase; xanthophyll cycle

向作者/读者索取更多资源

Based on our recent findings that in the diatom Phaeodactylum tricornutum, chlororespiration in periods of prolonged darkness leads to the accumulation of diatoxanthin (DT), we have elaborated in detail the interdependence between the chlororespiratory proton gradient and the activation of diadinoxanthin de-epoxidase (DDE). The data clearly demonstrates that activation of DDE in Phaeodactylum occurs at higher pH-values compared to activation of violaxanthin de-epoxidase (VDE) in higher plants. In thylakoid membranes as well as in enzyme assays with isolated DDE, the de-epoxidation of diadinoxanthin (DD) is efficiently catalyzed at pH 7.2, In comparison, de-epoxidation of violaxanthin (Vx) in spinach thylakoids is observed below pH 6.5. Phaeodactylum thylakoids isolated from high light grown cells, that also contain the pigments of the violaxanthin cycle, show violaxanthin de-epoxidation at higher pH-values, thus suggesting that in Phaeodactylum, one de-epoxidase converts both diadinoxanthin and violaxanthin. We conclude that the activation of DDE at higher pH-values can explain how the low rates of chlororespiratory electron flow, that lead to the build-up of a rather small proton gradient, can induce the observed accumulation of diatoxanthin in the dark. Furthermore, we show that dark activation of diadinoxanthin de-epoxidation is not restricted to Phaeodactylum tricornutum but was also found in another diatom, Cyclotella meneghiana.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据