4.6 Article

Time optimal control in spin systems

期刊

PHYSICAL REVIEW A
卷 63, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.63.032308

关键词

-

向作者/读者索取更多资源

In this paper, we study the design of pulse sequences for nuclear magnetic resonance spectroscopy as a problem of time optimal control of the unitary propagator. Radio-frequency pulses are used in coherent spectroscopy to implement a unitary transfer between states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation and to optimize the sensitivity of the experiments. Here, we give an analytical characterization of such time optimal pulse sequences applicable to coherence transfer experiments in multiple-spin systems. We have adopted a general mathematical formulation, and present many of our results in this setting, mindful of the fact that new structures in optimal pulse design are constantly arising. From general control theory perspective, the problems we want to study have the following character. Suppose we are given a controllable right invariant system on a compact Lie group. What is the minimum time required to steer the system from some initial point to a specified final point? In nuclear magnetic resonance (NMR) spectroscopy and quantum computing, this translates to, what is the minimum time required to produce a unitary propagator? We also give an analytical characterization of maximum achievable transfer in a given time for the two-spin system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据