4.5 Review

Theoretical studies on the regulation of oxidative phosphorylation in intact tissues

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
卷 1504, 期 1, 页码 31-45

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0005-2728(00)00237-1

关键词

regulation of metabolism; oxidative phosphorylation; mitochondrion; energy demand; computer model; theoretical prediction

向作者/读者索取更多资源

The theoretical studies on the regulation of oxidative phosphorylation that were performed with the aid of kinetic models of this process are overviewed. A definition of the regulation of the flux through a metabolic pathway is proposed and opposed to the control exerted by particular enzymes over this flux. Different kinetic models of oxidative phosphorylation proposed in the literature are presented, of which only the model proposed by myself and co-workers was extensively used in theoretical studies on the regulation and compensation in the oxidative phosphorylation system. These theoretical studies have led to the following conclusions: (1) in isolated mitochondria, an increase in the activity of an artificial ATP-using system stimulates mitochondria mainly via changes in [ADP], while changes in [ATP] and [P-i] play only a minor role; (2) in non-excitable tissues (e.g. liver), hormones (acting via some cytosolic factor(s)) activate directly both ATP usage and at least some enzymes of the ATP-producing block; (3) in excitable tissues (e.g. skeletal muscle), neural signals stimulate (via some cytosolic factor(s)) in parallel all the steps of oxidative phosphorylation together with ATP usage and substrate dehydrogenation; (4) the decrease in the flux through cytochrome oxidase caused by a decrease in oxygen concentration is, at least partially, compensated by a decrease in Deltap and increase in the reduction level of cytochrome c. A theoretical prediction is formulated that there should exist and be observable a universal cytosolic factor/regulatory mechanism which directly activates (at least in excitable tissues) all complexes of oxidative phosphorylation during an increased energy demand. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据