4.2 Article

Comparison of neural precursor cell fate in second trimester human brain and spinal cord

期刊

NEUROLOGICAL RESEARCH
卷 23, 期 2-3, 页码 260-266

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1179/016164101101198406

关键词

brain; fetal human; glia; neurons; spinal cord; stem cells

向作者/读者索取更多资源

Neural transplantation holds promise for the treatment of traumatic brain and spinal cord injury by replacing lost cellular elements as well as repairing neural damage. Fetal human stem cells derived from central nervous system (CNS) tissue are potential transplantable sources for all cell types found in the mature human nervous system including neurons, astrocytes and oligodendroglia. Although nearly all areas of the fetal human neuraxis contain undifferentiated neural precursor cells, the phenotypic fate of the daughter cells might vary from one region to another during a specific developmental period. The purpose of this study was to compare the various cell types derived from neural precursors cultured from second trimester fetal human brain and spinal cord. To this end, brains (n = 8) and spinal cords (n = 8) of 15-24 week fetuses were dissociated and grown in culture medium supplemented with epidermal growth factor (EGF) basic fibroblast growth factor (FGF) and leukemia inhibitory factor (LIF). The proliferating precursor cells from both brain and spinal cord grew as spherical masses that were plated on laminin-coated dishes after seven days in culture. During the next 5-7 days, the cells that emerged from these spheres were fixed and processed for immunocytochemistry. Brain derived spheres gave rise to cells expressing antigens specific for neurons (MAP-2ab and neuron specific-intermediate filaments), astrocytes (GFAP) and oligodendrocytes (A007). in contrast, cells that emerged from spinal cord derived spheres were only immunoreactive for GFAP. These data suggest that neuroepithelial precursor cells from different CNS regions, although similar in their responsiveness to proliferative growth factors, might differ in their ability to generate different cell types in the adult CNS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据