4.5 Article

Phospholipidomics reveals differences in glycerophosphoserine profiles of hypothermically stored red blood cells and microvesicles

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
卷 1828, 期 2, 页码 317-326

出版社

ELSEVIER
DOI: 10.1016/j.bbamem.2012.10.026

关键词

Stored RBC; Microvesicles; Phospholipids; Orbitrap; Shotgun mass spectrometry

资金

  1. CIHR/CBS/NSERC

向作者/读者索取更多资源

During their normal in vivo life cycle erythrocytes (red blood cells, RBCs) undergo biochemical changes leading to membrane microvesiculation and shedding. RBC microvesiculation also occurs in vitro under conditions of blood bank storage, so microvesicles (MVs) accumulate in the storage (preservation) medium over storage time. Considerable effort has been put into gaining a mechanistic understanding of the RBC microvesiculation process, as this is crucial to better understand RBC biology in disease and in health. Additionally, MVs accumulated in stored RBCs have been implicated in transfusion adverse inflammatory reactions, with chloroform extractable compounds, thus lipophilic, known to trigger the effect. However, because thin layer chromatography resolution of RBC and MV lipids has always enabled one to conclude high compositional similarities, in depth analysis of MV lipids has not been extensively pursued. Here we present an orbitrap mass spectrometry (MS) approach to compare the phospholipid composition of RBCs and MVs from leukoreduced, hypothermically (2-6 degrees C) stored RBC units. We used shotgun MS analysis and electrospray ionization (ESI) intra-source separation, and demonstrated high similarity of compositional profiles, except for glycerophosphoserines (PS). Contrasting abundances of PS 38:4 and PS 38:1 characterized MV and RBC profiles and suggested that storage-associated microvesiculation possibly involves shedding of specific membrane rafts. This finding indicates that phospholipidomics could likely contribute to a better understanding of the RBC microvesiculation process. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据