4.6 Article

Integrating SQP and branch-and-bound for mixed integer nonlinear programming

期刊

COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
卷 18, 期 3, 页码 295-309

出版社

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1011241421041

关键词

mixed integer nonlinear programming; branch-and-bound; sequential quadratic programming

向作者/读者索取更多资源

This paper considers the solution of Mixed Integer Nonlinear Programming (MINLP) problems. Classical methods for the solution of MINLP problems decompose the problem by separating the nonlinear part from the integer part. This approach is largely due to the existence of packaged software for solving Nonlinear Programming (NLP) and Mixed Integer Linear Programming problems. In contrast, an integrated approach to solving MINLP problems is considered here. This new algorithm is based on branch-and-bound, but does not require the NLP problem at each node to be solved to optimality. Instead, branching is allowed after each iteration of the NLP solver. In this way, the nonlinear part of the MINLP problem is solved whilst searching the tree. The nonlinear solver that is considered in this paper is a Sequential Quadratic Programming solver. A numerical comparison of the new method with nonlinear branch-and-bound is presented and a factor of up to 3 improvement over branch-and-bound is observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据