4.6 Article

Metabolic response of biofilm to shear stress in fixed-film culture

期刊

JOURNAL OF APPLIED MICROBIOLOGY
卷 90, 期 3, 页码 337-342

出版社

BLACKWELL SCIENCE LTD
DOI: 10.1046/j.1365-2672.2001.01244.x

关键词

-

向作者/读者索取更多资源

Aims: In a biofilm reactor, detachment force resulting from hydraulic shear is a major factor that determines the formation and structure of steady state biofilm. The metabolic response of biofilm to change in shear stress was therefore investigated. Methods and Results: A conventional annular reactor made of PVC was used, in which shearing over the rotating disc surface was strictly defined. Results from the steady state aerobic biofilm reactor showed that the biofilm structure (density and thickness) and metabolic behaviour (growth yield and dehydrogenase activity) were closely related to the shear stress exerted on the biofilm. Smooth, dense and stable biofilm formed at relatively high shear stress. Higher dehydrogenase activity and lower growth yield were obtained when the shear stress was raised. Growth yield was inversely correlated with the catabolic activity of biofilm. The reduced growth yield, together with the enhanced catabolic activity, suggests that a dissociation of catabolism from anabolism would occur at high shear stress. Conclusions: Biofilms may respond to shear stress by regulating metabolic pathways associated with the substrate flux flowing between catabolism and anabolism. A biological phenomenon, besides a simple physical effect, is underlying the observed relation between the shear stress and resulting biofilm structure. Significance and Impact of the Study: A hypothesis is proposed that the shear-induced energy spilling would be associated with a stimulated proton translocation across the cell membrane, which favours formation of a stronger biofilm. This research may provide a basis for experimental data on biofilm obtained at different shear stresses to be interpreted in relation to energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据