4.5 Article

Identification and functional characterization of zebrafish K2P10.1 (TREK2) two-pore-domain K+ channels

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
卷 1818, 期 1, 页码 33-41

出版社

ELSEVIER
DOI: 10.1016/j.bbamem.2011.09.015

关键词

Electrophysiology; Ion channel; K+ leak current; K(2P)10.1 (TREK2); Membrane potential; Zebrafish

资金

  1. Deutsche Forschungsgemeinschaft
  2. ADUMED foundation
  3. German Heart Foundation/German Foundation of Heart Research
  4. Max-Planck-Society

向作者/读者索取更多资源

Two-pore-domain potassium (K-2P) channels mediate K+ background currents that stabilize the resting membrane potential and contribute to repolarization of action potentials in excitable cells. The functional significance of K-2P currents in cardiac electrophysiology remains poorly understood. Danio redo (zebrafish) may be utilized to elucidate the role of cardiac K-2P channels in vivo. The aim of this work was to identify and functionally characterize a zebrafish otholog of the human K(2P)10.1 channel. K(2P)10.1 orthologs in the D. redo genome were identified by database analysis, and the full zK(2P)10.1 coding sequence was amplified from zebrafish cDNA. Human and zebrafish K(2P)10.1 proteins share 61% identity. High degrees of conservation were observed in protein domains relevant for structural integrity and regulation. K(2P)10.1 channels were heterologously expressed in Xenopus oocytes, and currents were recorded using two-electrode voltage clamp electrophysiology. Human and zebrafish channels mediated K+ selective background currents leading to membrane hyperpolarization. Arachidonic acid, an activator of hK(2P)10.1, induced robust activation of zK(2P)10.1. Activity of both channels was reduced by protein kinase C. Similar to its human counterpart, zK(2P)10.1 was inhibited by the antiarrhythmic drug amiodarone. In summary, zebrafish harbor K(2P)10.1 two-pore-domain K+ channels that exhibit structural and functional properties largely similar to human K(2P)10.1. We conclude that the zebrafish represents a valid model to study K(2P)10.1 function in vivo. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据