4.7 Article

Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter

期刊

NATURE NEUROSCIENCE
卷 4, 期 3, 页码 239-246

出版社

NATURE AMERICA INC
DOI: 10.1038/85080

关键词

-

向作者/读者索取更多资源

Potassium channels selectively conduct K+ ions across cell membranes, and use diverse mechanisms to control their gating. We studied ion permeation and gating of an inwardly rectifying K+ channel by individually changing the amide carbonyls of two conserved glycines lining the selectivity filter to ester carbonyls using nonsense suppression. Surprisingly, these backbone mutations do not significantly alter ion selectivity. However, they dramatically change the kinetics of single-channel gating and produce distinct subconductance levels. The mutation at the glycine closer to the inner mouth of the pore also abolishes high-affinity binding of Ba2+ to the channel, indicating the importance of this position in ion stabilization in the selectivity filter. Our results demonstrate that K+ ion selectivity can be retained even with significant reduction of electronegativity in the selectivity filter, and that conformational changes of the filter arising from interactions between permeant ions and the backbone carbonyls contribute directly to channel gating.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据