4.5 Article

The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor

期刊

MOLECULAR MICROBIOLOGY
卷 39, 期 5, 页码 1212-1224

出版社

BLACKWELL SCIENCE LTD
DOI: 10.1111/j.1365-2958.2001.02208.x

关键词

-

向作者/读者索取更多资源

Adherence of pathogenic microorganisms to the cell surface is a key event during infection. We have previously reported the characterization of Listeria monocytogenes transposon mutants defective in adhesion to eukaryotic cells. One of these mutants had lost the ability to produce Ami, a 102 kDa autolytic amidase with an N-terminal catalytic domain and a C-terminal cell wall-anchoring domain made up of repeated modules containing the dipeptide GW ('GW modules'). We generated ami null mutations by plasmid insertion into L. monocytogenes strains lacking the invasion proteins InlA (EGD Delta inlA), InlB (EGD Delta inlB) or both (EGD Delta inlAB). These mutants were 5-10 times less adherent than their parental strains in various cell types. The adhesion capacity of the mutants was restored by complementation with a DNA fragment encoding the Ami cell wall-anchoring domain fused to the Ami signal peptide. The cell-binding activity of the Ami cell wall-anchoring domain was further demonstrated using the purified polypeptide. Growth of the ami null mutants constructed in EGD and EGD Delta inlAB backgrounds was attenuated in the livers of mice inoculated intravenously, indicating a role for Ami in L. monocytogenes virulence. Adhesive properties have recently been reported in the non-catalytic domain of two other autolysins, Staphylococcus epidermidis AtlE and Staphylococcus saprophyticus Aas. Interestingly, we found that these domains were also composed of repeated GW modules. Thus, certain autolysins appear to promote bacterial attachment by means of their GW repeat domains. These molecules may contribute to the colonization of host tissues by Gram-positive bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据