4.5 Article

Interference between two modulators of N-type (CaV2.2) calcium channel gating demonstrates that ω-conotoxin GVIA disrupts open state gating

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
卷 1798, 期 9, 页码 1821-1828

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamem.2010.05.004

关键词

Gating current; Roscovitine; Modulation; Markov model; omega-conopeptide

资金

  1. Pennsylvania (PA) Department of Health

向作者/读者索取更多资源

N-type calcium channels play an important role in synaptic transmission and a drug that blocks these channels has become an important tool in controlling chronic pain. The development of new N-channel-targeted drugs is dependent on a better understanding of the gating of these channels and how that gating can be modulated. We have previously concluded that omega-conotoxin GVIA (GVIA) is a gating modifier that acts by destabilizing the N-channel open state. However, this conclusion was largely based on our modeling results and requires experimental support. Roscovitine, a tri-substituted purine, has been shown to stabilize the N-channel open state to slow gating charge relaxation, which provides a direct test of our hypothesis for GVIA-induced gating modification. We found that roscovitine could modulate gating current in the presence of GVIA, which shows that roscovitine can still affect the gating of the GVIA-bound N-channel. However, the magnitude of the roscovitine-induced slowing of Off-gating current was significantly reduced. In addition to confirming our hypothesis, our evidence supports an additional effect of GVIA to alter gating transitions between N-channel closed states. By strongly limiting access to the N-channel open state, GVIA analogs that selectively induce this modulation could provide the basis for the next generation drugs that treat chronic pain. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据