4.5 Article

Lipid bilayer disruption by oligomeric alpha-synuclein depends on bilayer charge and accessibility of the hydrophobic core

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
卷 1788, 期 6, 页码 1271-1278

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamem.2009.03.010

关键词

Amyloid; Synuclein; Lipid interaction; Pore; Membrane

向作者/读者索取更多资源

Soluble oligomeric aggregates of alpha-synuclein have been implicated to play a central role in the pathogenesis of Parkinson's disease. Disruption and permeabilization of lipid bilayers by alpha-synuclein oligomers is postulated as a toxic mechanism, but the molecular details controlling the oligomer-membrane interaction are still unknown. Here we show that membrane disruption strongly depends on the accessibility of the hydrophobic membrane core and that charge interactions play an important but complex role. We systematically studied the influence of the physical membrane properties and solution conditions on lipid bilayer disruption by oligomers using a dye release assay. Varying the lipid headgroup composition revealed that membrane disruption only occurs for negatively charged bilayers. Furthermore. the electrostatic repulsion between the negatively charged (x-synuclein and the negative surface charge of the bilayer inhibits vesicle disruption at low ionic strength. The disruption of negatively charged vesicles further depends on lipid packing parameters. Bilayer composition changes that result in an increased lipid headgroup spacing make vesicles more prone to disruption, suggesting that the accessibility of the bilayer hydrocarbon core modulates oligomer-membrane interaction. These data shed important new insights into the driving forces governing the highly debated process of oligomer-membrane interactions. (c) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据