4.5 Article

Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
卷 1788, 期 5, 页码 1193-1203

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamem.2009.02.020

关键词

Anti-inflammatory activity; Bactericidal mechanism; Cell specificity; Trp-rich model antimicrobial peptide

资金

  1. Ministry of Science and Technology
  2. Korea and the Korea Science and Engineering Foundation
  3. Research Center for Proteineous Materials [R11-2000-083-00000-0]

向作者/读者索取更多资源

To develop novel short Trp-rich antimicrobial peptides (AMPs) with potent cell specificity (targeting bacteria but not eukaryotic cells) and anti-inflammatory activity, a series of 11-meric Trp-rich model peptides with different ratios of Leu and Lys/Arg residues, XXWXXWXXWXX-NH2 (X indicates Leu or Lys/Arg), was synthesized. K6L2W3 displayed an approximately 40-fold increase in cell specificity, compared with the natural Trp-rich AMP indolicidin (IN). Lys-containing peptides (K8W3, K7LW3 and K6L2W3) showed approximately 2- to 4-fold higher cell specificities than did their counterparts, the Arg-containing peptides (R8W3, R7LW3 and R6L2W3), indicating that multiple Lys residues are more important than multiple Arg residues in the design of AMPs with good cell specificity. The excellent resistance Of D-enantiomers (K6L2W3-D and R6L2W3-D) and Orn/Nle-containing peptides (O6L2W3 and O6L2W3) to trypsin digestion compared with the rapid breakdown of the L-enantiomers (K6L2W3 and R6L2W3), highlights the clinical potential of such pepticles. K6L2W3, R6L2W3, K6L2W3-D and R6L2W3-D caused weak dye leakage from bacterial membrane-mimicking negatively charged EYPG/EYPE (73, v/v) liposomes. Confocal microscopy showed that these pepticles penetrated the cell membrane of Escherichia coli and accumulated in the cytoplasm, as observed for buforin-2. Gel retardation studies revealed that the peptides bound more strongly to DNA than did IN. These results suggested that one possible peptide bactericidal mechanism may relate to the inhibition of intracellular functions via interference with DNA/RNA synthesis. Furthermore, some model pepticles, containing K6L2W3, K5L3W3, R6L2W3, O6L2W3, O6L2W3, and K6L2W3-D inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA expression, the release of nitric oxide (NO) following LPS stimulation in RAW264.7 cells and had powerful LPS binding activities at bactericidal concentrations. Collectively, our results indicated that these pepticles have potential for future development as novel antimicrobial and anti-inflammatory agents. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据