4.7 Article Proceedings Paper

Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake

期刊

TREE PHYSIOLOGY
卷 21, 期 5, 页码 337-344

出版社

OXFORD UNIV PRESS
DOI: 10.1093/treephys/21.5.337

关键词

carbon flux; drought stress; ozone flux; photosynthesis; soil water

类别

向作者/读者索取更多资源

To gain insight into the limitations imposed by a typical Mediterranean-climate summer drought on the uptake of carbon and ozone in the ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystem, we compared diurnal trends in leaf physiology of young trees in a watered and a control plot located in the Sierra Nevada Mountains, CA, USA (Blodgett Forest, 38 degrees 53' N, 120 degrees 37' W, 1315 m elevation). Predawn water potential of trees in the watered plot remained above -0.3 MPa throughout the growing season, whereas it dropped in the control plot from -0.24 to -0.52 MPa between late May and mid-august. Photosynthesis and stomatal conductance of trees in the watered plot were relatively insensitive to atmospheric vapor pressure deficit (VPD), whereas gas exchange of trees in the control plot varied with changes in soil water, VPD and temperature. Although the 1998 growing season was abnormally wet, we saw a pronounced drought effect at the control site. Over the 2 months following the onset of watering, carbon and ozone uptake were measured on three days at widely spaced intervals. Carbon uptake per unit leaf area by 1-year-old foliage of trees in the control plot was 39, 35 and 30% less, respectively, than in the watered plot, and estimated ozone deposition per unit leaf area (ozone concentration times stomatal conductance) was 36, 46 and 41% less.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据