4.4 Article

Anaerobic initial reaction of n-alkanes in a denitrifying bacterium:: Evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism

期刊

JOURNAL OF BACTERIOLOGY
卷 183, 期 5, 页码 1707-1715

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.183.5.1707-1715.2001

关键词

-

向作者/读者索取更多资源

A novel type of denitrifying bacterium (strain HxN1) with the capacity to oxidize n-alkanes anaerobically with nitrate as the electron acceptor to CO2 formed (1-methylpentyl) succinate (MPS) during growth on n-hexane as the only organic substrate under strict exclusion of air. Identification of MPS by gas chromatography-mass spectrometry was based on comparison with a synthetic standard. MPS was not formed during anaerobic growth on n-hexanoate. Anaerobic growth with [1-C-13]n-hexane or d(14)-n-hexane led to a 1-methylpentyl side chain in MPS with one C-13 atom or 13 deuterium atoms, respectively. This indicates that the 1-methylpentyl side chain originates directly from n-hexane. Electron paramagnetic resonance spectroscopy revealed the presence of an organic radical in n-hexane-grown cells but not in n-hexanoate-grown cells. Results point at a mechanistic similarity between the anaerobic initial reaction of n-hexane and that of toluene, even though n-hexane is much less reactive; the described initial reaction of toluene in anaerobic bacteria is an addition to fumarate via a radical mechanism yielding benzylsuccinate. We conclude that n-hexane is activated at its second carbon atom by a radical reaction and presumably added to fumarate as a cosubstrate, yielding MPS as the first stable product. When 2,3-d(2)-fumarate was added to cultures growing on unlabeled n-hexane, 3-d(1)-MPS rather than 2,3-d(2)-MPS was detected, indicating loss of one deuterium atom by an as yet unknown mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据