4.5 Article

An adenosyl-cobalamin (coenzyme-B12)-repressed translational enhancer in the cob mRNA of Salmonella typhimurium

期刊

MOLECULAR MICROBIOLOGY
卷 39, 期 6, 页码 1585-1594

出版社

WILEY
DOI: 10.1046/j.1365-2958.2001.02346.x

关键词

-

向作者/读者索取更多资源

Expression of the cobalamin (Cbl) biosynthetic cob operon in Salmonella typhimurium is repressed by the end-product. This regulation is conferred mainly at the translational level and involves a cobalamin-induced folding of an RNA hairpin that sequesters the ribosomal binding site (RBS) of the cob mRNA and prevents translation initiation. A combined structural and mutational analysis shows that a cis-acting translational enhancer (TE) element, located 83 nucleotides upstream of the Shine-Dalgarno sequence in the 5'-untranslated region (5'-UTR) of the cob mRNA, is required to unfold the inhibitory RBS hairpin in the absence of cobalamin. The TE element, which consists of 5 nucleotides, is proposed to confer its enhancer function in the absence of cobalamin by interacting with nucleotides in the stem of the RBS hairpin. This interaction destabilizes the RNA hairpin and allows ribosome binding. In the presence of cobalamin, the enhancer function is inhibited. As a result, the RBS hairpin forms and prevents translation initiation. Several additional RNA hairpins in the 5'-UTR were also identified and are suggested to be important for repression. The above data suggest that normal cobalamin repression of the cob operon requires that the 5'-UTR has a defined secondary and tertiary structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据