4.5 Article

Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
卷 1827, 期 10, 页码 1156-1164

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbabio.2013.06.005

关键词

Mitochondria; Complex II; Succinate:ubiquinone oxidoreductase; Reactive oxygen species (ROS); Dicarboxylates; Atpenin A5

资金

  1. DFG (Deutsche Forschungsgemeinschaft) [SFB 815]

向作者/读者索取更多资源

The impact of complex II (succinate:ubiquinone oxidoreductase) on the mitochondrial production of reactive oxygen species (ROS) has been underestimated for a long time. However, recent studies with intact mitochondria revealed that complex II can be a significant source of ROS. Using submitochondrial particles from bovine heart mitochondria as a system that allows the precise setting of substrate concentrations we could show that mammalian complex II produces ROS at subsaturating succinate concentrations in the presence of Q-site inhibitors like atpenin A5 or when a further downstream block of the respiratory chain occurred. Upon inhibition of the ubiquinone reductase activity, complex II produced about 75% hydrogen peroxide and 25% superoxide. ROS generation was attenuated by all dicarboxylates that are known to bind competitively to the substrate binding site of complex II, suggesting that the oxygen radicals are mainly generated by the unoccupied flavin site. Importantly, the ROS production induced by the Q-site inhibitor atpenin A5 was largely unaffected by the redox state of the Q pool and the activity of other respiratory chain complexes. Hence, complex II has to be considered as an independent source of mitochondrial ROS in physiology and pathophysiology. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据